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Self-consistent mode-coupling approach to one-dimensional heat transport
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In the present Rapid Communication we present an analytical and numerical solution of the self-consistent
mode-coupling equations for the problem of heat conductivity in one-dimensional systems. Such a solution
leads us to propose a different scenario to accommodate the known results obtained so far for this problem.
More precisely, we conjecture that the universality class is determined by the leading order of the nonlinear
interaction potential. Moreover, our analysis allows us to determine the memory kernel, whose expression puts
on a more firm basis the previously conjectured connection between anomalous heat conductivity and anoma-

lous diffusion.
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It is well known that relaxation and transport phenomena
in reduced spatial dimensions (d<<3) are often qualitatively
different from their three-dimensional counterparts. This is a
documented effect, for example, in single-filing systems,
where particle diffusion does not follow Fick’s law [1]. An-
other related phenomenon is the enhancement of vibrational
energy transmission in quasi- one-dimensional (1D) systems
like polymers [2] or individual carbon nanotubes [3]. The
specific instance of anomalous thermal conduction in low-
dimensional many-particle systems has recently received a
renewed attention [4]. Anomalous behavior means both a
divergence of the finite-size conductivity w(L)oL® in the
large-size limit L — o0 and a nonintegrable decay of equilib-
rium correlations of the energy current (the Green-Kubo in-
tegrand) (J(£)J(0))ocr~1=9 at large times r— (with 0=«
<1). Simulations [5] and theoretical arguments [6] indicate
that anomalies should occur generically in d=2 whenever
momentum is conserved.

The importance of predicting the scaling behavior (i.e.,
the value of «) is twofold: (i) on a basic ground, to classify
the ingredients (e.g., symmetries) that define the possible
universality classes; (ii) on a practical ground, to estimate
heat conductivity in finite systems, a crucial issue to compare
with experimental data on, say, carbon nanotubes. In spite of
several efforts, the theoretical scenario is still controversial.
In d=1, arguments based on mode-coupling theory (MCT)
[7,8], a well-known approach to estimate long-time tails of
fluids [9] and to describe the glass transition [10], yield «
=2/5. This estimate was criticized as inconsistent in Ref. [6],
where renormalization group arguments were instead shown
to give a=1/3. Nevertheless, the 2/5 value was later derived
both from a kinetic-theory calculation for the quartic (B)
Fermi-Pasta-Ulam (FPU) model [11] and from a solution of
the MCT by means of an ad hoc ansatz [12]. It was thereby
conjectured [12] that 2/5 is found for a purely longitudinal
dynamics, while a crossover toward 1/3 can be observed
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only in the presence of a coupling to transversal motion.
Unfortunately, the accuracy of numerical simulations is gen-
erally insufficient to disentangle the whole picture. The only
two convincing studies concern the hard point gas, which has
been recently found to be characterized by a=1/3 [13], and
the purely quartic FPU model, where instead « is definitely
larger than 1/3 (and possibly closer to 2/5) [14]. The situation
is even more controversial in d=2 where logarithmic diver-
gence is expected [15].

The exact self-consistent solution of the MCT equations
presented in this Rapid Communication demonstrates that
the overall scenario is different from that one proposed in
[12], namely, that @=1/3 in the presence of cubic nonlin-
earities. This prediction is confirmed by our numerical simu-
lations of the FPU model with cubic potential, which yields
sizably different « values with respect to the quartic case.
Altogether, theoretical and numerical results indicate that the
asymptotic scaling behavior is determined by the order of the
leading nonlinearity in the interaction potential.

Let us consider the simplest one-dimensional version of
the self-consistent MCT for the normalized correlator of
the Fourier transform of the displacement field G(g,?)
=(Q"(q.,1)Q(g,0))/{|Q(¢)|?). In dimensionless units in which
the particle mass, the lattice spacing, and the bare sound
velocity are set to unity, they read [8,16]

t

G(q,t) + sf I'(g,t- s)G(q,s)ds +w*(q)G(gq,1) =0,
0

Mgn=w@’r 3 GpaGp.. )

p+p'—q=0,xm

We consider periodic boundaries so that the wave numbers
are g=2mk/N with —N/2+1=<k=N/2. Notice that G(q,1)
=G(-gq,1). Equations (1) must be solved with the initial con-
ditions G(g,0)=1 and G(g,0)=0.

The first of Egs. (1) is exact and is derived within the
well-known Mori-Zwanzig projection approach [17]. In the
small-wave-number limit, it describes the response of an
elastic string at finite temperature. The above mode-coupling
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approximation of the memory function I' has been derived
for a chain of atoms interacting through a nearest-neighbor
anharmonic potential V(x) [8,16] whose expansion around its
minimum at x=0 is of the form x2/2+g3x3/3+- -+ (see, e.g.,
the Lennard-Jones potential). Both the coupling constant &
and the dispersion relation w(g) are temperature-dependent
input parameters that must be computed independently by
simulation or approximate analytical approaches [8,16]. For
the aims of the present Rapid Communication, we may re-
strict ourselves to considering their bare values, obtained in
the harmonic approximation that, in our units, read e
=3g3kpT/2m and w(g)=2]sin £|. Of course, the actual renor-
malized values are needed when a quantitative comparison
with a specific model is looked for. Moreover, since the
anomalies we are interested in stem from the nonlinear inter-
action of long-wavelength modes, we let w(q)=|g|, in the
analytic treatment presented below.

Direct numerical simulations [8] indicate that nonlinear
and nonlocal losses in Eq. (1) are small compared to the
oscillatory terms. This suggests splitting the G dynamics into
phase and amplitude evolution,

G(g,1) = Clg,1)e " + ¢ . c. (2)

Upon substituting this equation into Eq. (1), one obtains, in
the slowly varying envelope approximation, gC > C,

t

3
EEC(q,tHsf dr'M(q,t-1")C(q,1") =0 (3)
0

plus a similar expression for C*, while the new kernel M
turns out to be

MWﬁ=ff

—0

o0

de*(p_qJ)C(p’t)’ (4)

where the sum in Eq. (1) has been replaced by a suitable
integral, since we consider the thermodynamic limit N=c0
and small ¢ values, which are, by the way, responsible for
the asymptotic behavior.

Notice that Egs. (3) and (4) have been obtained after dis-
carding the second order time derivative of C(g,7) as well as

the integral term proportional to C, besides all rapidly rotat-
ing terms. The validity of this approximation is related to the
separation between the decay rate of C(g,7r) and w(q); its
correctness will be checked a posteriori, after discussing the
scaling behavior of C(g,f). Notice also that in this approxi-
mation, Umklapp processes do not contribute: it is in fact
well known that they are negligible for long-wavelength
phonons in 1D [5].

Having transformed the second order differential equation
for G into a first order one for C, we can introduce a simple
scaling argument yielding the dependence of C on ¢ and ¢ as
follows (see also [18], where a similar equation was investi-
gated):

Clg.0) = g(etg®), M(g.0) = f(etg?).  (5)

This shows that the decay rate for the evolution of C(g,?) is
—
of the order q3/ 2\/e, which has to be compared with the scale

q of the corresponding phase factor. Accordingly, amplitude
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FIG. 1. (Color online) Fourier transform G(q, w) of the correla-
tion functions for three different wave numbers e=1, N=2000. The
solid line is the line shape computed by the approximate analytic
theory, i.e., by Fourier transforming the function C(g,7) defined in
Egs. (5) and (8). The same curves are plotted in the inset on a
log-log scale, where only positive frequencies are shown.

and phase dynamics become increasingly separated for g
—0. High ¢ values (¢~ 1) are those for which the slowly
varying envelope approximation is less accurate. However, if
€ is small enough, such modes are correctly described, too.
This has been checked in the numerical solution of Egs. (1)
(see Figs. 1 and 2 below).

The functions f and g can be determined by substituting

expression (5) into Egs. (3) and (4). Upon setting x
312

=\etqg*?, one obtains the equation
g'(x) =—f dy flx=y)g(y), (6)
0
+o0 .
[ =x72° J dy g" (7 = y[?)g(v*"?). (7

—00

The small-x behavior can be determined analytically,

1 4/3
g(x)=56><p<— %) f(X)=)%, (8)

where a is a suitable constant that is determined self-
consistently from Eq. (6). To assess the validity of the above
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FIG. 2. (Color online) Scaling of the linewidth ¥(g) of G(gq, )
with ¢ for three different values of the coupling constant € and N
=2000. The solid line corresponding to the power law ¢*? is plotted
for reference.
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calculation, we have numerically integrated Egs. (1) by the
Euler method for the original dispersion relation w(g) and
different & values. We have verified that a time step At
=0.01 guarantees a good numerical accuracy over the ex-
plored time range. The Fourier transform G(g,w) is plotted
in Fig. 1 for three different ¢ values versus w—w,,,,(q),
where ,,,,(q) is the frequency corresponding to the maxi-
mal value G,,,, of the spectrum [this is equivalent to remov-
ing the oscillating component from G(g,7)]. Furthermore, in
order to test relation (5), the vertical axis is scaled to the
maximum G value, while the frequencies are divided by the
half-width y(g) at half of the maximum height. This latter
quantity can be interpreted as the inverse lifetime of fluctua-
tions of wave number ¢. The good data collapse confirms the
existence of a scaling regime. The approximate analytical
expression is in excellent agreement with the data. As ex-
pected, some deviations are present for small w where Eq.
(8) is not strictly applicable. Moreover, in the inset of Fig. 1,
where the same curves are plotted using doubly logarithmic
scales, one sees that the line shapes follow the predicted
power law @™ over a wide range of frequencies. In Fig. 2
we show that y(g) is indeed proportional to Veg®?. Tt is
particularly instructive to notice that the agreement is very
good also for a relatively large value of the coupling constant
(e=1), although the slowly varying envelope approximation
is not correct for large ¢ values. The deviations observed at
small g values for small couplings are due to the very slow
convergence in time. Better performances could be obtained
by increasing both N and the integration time (10%, in our
units) well beyond our current capabilities.

It is crucial to compare these result with previous work.
Making use of Egs. (5) and (8), it can be shown that the
memory function I' contains terms of the form g%e*'/1*/3,
i.e., it oscillates with a power-law envelope. Accordingly, its
Laplace transform has branch-cut singularities of the form
q*/(z+q)"3. This finding is not consistent with the heuristic
assumption of Refs. [7,8] and the result of [12], where MCT
equations were solved with the ansatz I'(g,z) =¢*V(z). In ad-
dition, the numerical solution does not show any signature of
the ¢*/z'"3 dependence found in [12]. For instance, it would
imply a peak at w=0 in the spectrum of I which is, instead,
absent in numerical solutions.

To estimate the long-time decay of the energy-current au-
tocorrelation, it is customary to consider the approximate
expression [12],

2
J(0)J(0)) < 2 (?) G*(g.1). )
q

q

This amounts to disregarding higher-order terms which are
believed not to alter the leading behavior. As the sum in the
above equation is dominated by the small-g terms, recalling
that dw/dq =1, one then finds, by using Eq. (5),

s = [ dg (gD =35 (0)

i.e., a=1/3. Note that this result is independent of the actual
form of g (provided convergence of the integral is ensured).
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FIG. 3. (Color online) The logarithmic derivative of the energy-
flux spectrum S(v) versus the frequency v for the FPU potential
with energy density set equal to 10. The two horizontal lines corre-
spond to the theoretical predictions —1/3 and —2/5. The statistical
error is on the order of the observed irregular fluctuations.

This scaling has also been checked to hold by directly evalu-
ating the sum (9) with the numerically computed correlations

As already mentioned at the beginning, several numerical
simulations have been performed to estimate the exponent a.
Since the most accurate data [14] differ significantly from
1/3, we decided to run a new set of simulations. We consid-
ered the FPU model with interparticle potential V(x)=x?/2
+g3x3/3+x*/4 and periodic boundary conditions. We per-
formed microcanonical simulations to compute the average
power spectrum S(v) of J (see Refs. [5,14] for details). The
long-time tail manifests itself as a power-law divergence v
at low frequencies, v— 0. In order to provide a reliable esti-
mate of «, it is convenient to evaluate the logarithmic de-
rivative dIn S/dInv. As shown in Fig. 3, for g;=1 this
quantity does display a plateau around —1/3 (the growth to-
wards zero at very small v values is due to the cutoff intro-
duced by the finite size of the lattice). On the other hand, the
data obtained for g;=0 (FPU-8 model) indicate a noticeably
different scaling exponent, which is much closer to —2/5 and
in agreement with previous works [11,14].

We have thus reached the important conclusion that the
memory kernel decays algebraically in the prescribed regime
and, accordingly, the relaxation is not exponential In C=
—q*t*? (i.e., non-Lorenzian line shapes). The further striking
feature is that conventional hydrodynamics breaks down,
since the peak widths scale as ¢*? rather than g2, as expected
in the standard case. In addition, the linewidths are con-
nected to transport coefficients being proportional to Ag?,
where A is the sound attenuation constant. The anomalous
scaling can be recast in terms of a diverging A(q)~¢q ">
Altogether, one may think of this as a superdiffusive process,
intermediate between standard diffusive and ballistic propa-
gation. Our result thus strengthen the picture emerging in
Ref. [13] from the analysis of the hard point gas, where it has
been shown that energy perturbations perform a Lévy walk.
One merit of our approach is that it allows for a direct con-
nection with anomalous diffusion problems [19]. As it is
known, these can be modeled by generalized Langevin equa-
tions with power-law kernels. If we now assume that expres-
sion (8) for f holds for every x, we can solve Egs. (3) by
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Laplace transforming Eq. (4) to obtain C(g,z)=iz"?/(iz*?
+aq?®). This expression is precisely the Laplace transform of
the Mittag-Leffler function E,(—(\1)*) [19,20] for u=4/3
and \(ag?)** [21]. This observation suggests that the effec-
tive evolution of fluctuations should be modeled by the frac-
tional differential equation

(9,“
—C(gq,t) + \*C(q,1) =0. 11
pole U (g.1) (11)

The case of interest here (1 <u=?2) corresponds to the so-
called fractional oscillations [20]. It should be emphasized
that in the present context, memory arises as a genuine
many-body effect and need not be postulated a priori.

In conclusion, we have shown that MCT with the cubic
nonlinearity (1) predicts a >3 decay of the heat current
autocorrelation, i.e., @=1/3. Our analysis reconciles this ap-
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proach with the renormalization group calculation [6] and
supports the idea that the mechanisms yielding anomalous
transport in 1D are largely universal. The sizable deviations
observed for quartic potentials suggest the existence of a
different universality class that should be described by dif-
ferent mode-coupling equations with a quartic nonlinearity.
A preliminary analysis confirms that this scenario is indeed
correct [22]. Finally, we have analytically shown that
memory effects emerging from the nonlinear interaction of
long-wavelength modes can be described by a generalized
Langevin equation with power-law memory. This provides a
sound basis establishing a connection between anomalous
transport and superdiffusive processes.
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systems” funded by MIUR Italy.
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